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5. Discussion 21

A. Details of computations for dual giants 22

B. Details of computations for giants 23

1. Introduction

String theory has been successful in accounting for the statistical entropy of many su-

persymmetric asymptotically flat black holes [1, 2]. Three years ago Gutowski and Reall

discovered supersymmetric asymptotically AdS5 black holes with regular horizons [3 – 8]. A

microscopic understanding of these black holes is an important open problem in AdS/CFT.

The simplest such asymptotically AdS5 black hole rotates with equal angular momenta

in two orthogonal planes in AdS5 directions and carries a single U(1) electric charge. The

entropy of this black hole is known to be

SBH =
π2

2G5
ω3

√
1 +

3ω2

4l2
, (1.1)

where ω is a parameter related to the black hole angular momentum and electric charge and

l is the AdS5 radius. As was shown in [11], when lifted to a 10-dimensional type IIB solution,

1We thank N. Suryanarayana for collaboration in this section
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the geometry asymptotes to AdS5×S5 and preserves just two supersymmetries. Since only

the five-form flux is turned on, the microstates of this black hole may be thought to be some

configuration of multiple giant gravitons [9, 10], which preserve 1
16 of the supersymmetries

of AdS5× S5. The construction and counting of such states is proving to be a difficult, and

as yet unsolved, problem (for some related progress see [12 – 17]). So it is natural to look

for other avenues to address the problem of microstate counting for these black holes. For

instance, a Fermi surface model was proposed for a microscopic description for these black

holes in [18] where a qualitative agreement was found.

Around two years ago, Strominger and collaborators provided a specific example of

a four-charge black hole carrying D0 and D4 charges with near-horizon geometry AdS2×
S2× CY3 where near-horizon microstates could account for the entropy [19, 20]. The

microstates involved in this derivation did not preserve any of the asymptotic supersym-

metries. One reason for this somewhat surprising feature is that supersymmetric quantum

mechanics tells us that the microstates preserving the asymptotic supersymmetries are

non-normalisable [21] and hence should not be included in the counting. The way out

of this conundrum was to transform to global time [22] and use eigenstates of the global

Hamiltonian to do the counting. In Poincaré time, these states corresponded to D0 brane

states popping in and out of the horizon.

Motivated by this picture the near-horizon geometry of the simplest Gutowski-Reall

black hole was studied in some detail in [23]. There it was shown that there is a doubling

of supersymmetries near the horizon. The superisometry group of the horizon was found

to be SU(1, 1|1). When lifted to ten dimensions, the near-horizon geometry has a deformed

three-sphere S̃
3

and a deformed five-sphere S̃
5

with a fibration of the time coordinate of

AdS2 over them. The AdS2 part of the geometry can be written in both global and Poincare

coordinates. We will call D3-branes wrapping three of the S̃
5

directions, black hole giant

gravitons (BHG) while D3-branes wrapping the S̃
3

will be called black hole dual giants

(B̂HG). It was shown in [23] that giant and dual giant type probes which preserve half the

near-horizon supersymmetries exist in the lifted geometry. In AdS2 Poincaré coordinates,

the probes have zero energy and preserve exactly the asymptotic supersymmetries. In

AdS2 global coordinates, the probes have non-trivial Hamiltonians and preserve none of

the asymptotic supersymmetries. In this case both BHG and B̂HG preserve the same

fraction of the near-horizon supersymmetries. One naturally wonders if these near-horizon

microstates could be used to account for the microscopic entropy of the black hole. Another

reason to expect this to be the case is that the conserved charges of the black hole can be

extracted completely from the near-horizon geometry as was shown in [24].

In this paper we quantise the phase space of solutions of the B̂HGs in AdS2 global

coordinates and count them. We find that there is an exponential degeneracy and hence a

large contribution to the microstates from these solutions. The leading order result is off

by a degeneracy factor which we argue is the result of a missing quantum number.

Motivated by the missing quantum number we study world-volume fluxes which pre-

serve the same supersymmetry as the original solutions. We find that a whole class of

solutions exist where electromagnetic waves can be turned on in the fibre direction after

writing the deformed 3-spheres as Hopf fibrations over CP 1. These waves contribute to
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the missing angular momentum quantum number. The resulting equations of motion are

very similar to the 1
8 -BPS AdS5× S5 giants with fluxes which were studied in [25]. We

will demonstrate that turning on world-volume fluxes on 1
8 -BPS AdS5×S5 dual giants will

generically break supersymmetry by a further half. This can be anticipated by noting that

the most general 1
8 -BPS dual giant configuration [26] is known to be spherically symmetric

and turning on waves will generically break this spherical symmetry. We provide a simple

maximisation argument motivated by [14] to show how the near-horizon and asymptotic

states could be used to account for the macroscopic entropy. The direct way of doing this

is by quantising the new phase space which we have not attempted in this paper.

In order to account for the full black hole entropy, one possibly needs to turn on

mechanical waves on the world-volume as well. We will not have anything to say about

these but will leave this as an open problem. In the final solution to this problem from

near-horizon microstates, we feel our BPS analysis of world-volume electromagnetic waves

will be important. Our analysis may also be helpful in developing an understanding of

how the black hole superconformal quantum mechanics is embedded in N = 4 super Yang

Mills.

The paper is organised as follows. In section 2, we review the near horizon geometry

and probes of the black hole under investigation. In section 3, we count dual giant type

configurations and motivate the addition of fluxes on the world-volume. In section 4, we

study near horizon giant and dual giant type configurations with world-volume fluxes which

preserve the same supersymmetry as those without fluxes. We conclude with a discussion

and some speculative comments in section 5. Calculational details of the supersymmetry

analysis are given in appendices A and B.

2. Review of the near horizon

2.1 Geometry

The near-horizon-geometry can be written as [23]

ds2
10 = ds2

5 + l2
3∑

i=1

[
(dµi)

2 + µ2
i

(
dξi +

2

l
√

3
A

)2]
, (2.1)

F (5) = (1 + ∗(10))

[
− 4

l
vol5 +

l2√
3

3∑

i=1

d(µi)
2 ∧ dξi ∧ ∗(5)F

(2)

]
, (2.2)

where µ1 = sin α, µ2 = cos α sin β and µ3 = cos α cos β with 0 ≤ α, β ≤ π/2, 0 ≤ ξi ≤ 2π

and together they parametrise an S5. Here in Poincaré coordinates for the AdS2 part

ds2
5 = −a2r2dt2 + b2 dr2

r2
+

ω2

4

(
(σL

1 )2 + (σL
2 )2

)
+

ω2

4a2b2

(
σL

3 +
6a2b2

lω
rdt

)2

, (2.3)

where a2 = 4λ2

ω2l2
“

1+ 3ω2

4l2

” , b2 = ω2l2

4λ2 and λ =
√

l2 + 3ω2. The gauge potential is given by

A =

√
3

2

(
2r

ω
dt +

ω2

4l
σL

3

)
. (2.4)
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The right-invariant one-forms on SU(2) are

σL
1 = sinφdθ − sin θ cos φdψ , (2.5)

σL
2 = cos φdθ + sin θ sin φdψ , (2.6)

σL
3 = dφ + cos θdψ . (2.7)

The range of the angles are 0 ≤ θ ≤ π, 0 ≤ ψ ≤ 2π and 0 ≤ φ ≤ 4π. The 10-d Killing

spinor is given by

ǫ = exp

[
− i

2
(ξ1 + ξ2 + ξ3)

]
exp

[
−2iλrt

lω2
Γ49(1 + Γ09)

]
×

× exp

[(
3ω

4λ
Γ49(1 + Γ09) −

1

2
Γ09

)
ln r

]
ǫ0 , (2.8)

where ǫ0 is a 32 component constant spinor satisfying Γ11ǫ0 = −ǫ0,Γ0149ǫ0 = −iǫ0,Γ23ǫ0 =

−iǫ0,Γ57ǫ0 = −iǫ0. In terms of global coordinates for the AdS2 part

ds2
5 = −

(
1 +

ρ2

b2

)
dτ2 +

dρ2

1 + ρ2

b2

+
ω2

4

(
(σL

1 )2 + (σL
2 )2

)
+

ω2

4a2b2

(
σL

3 − 6ab

ωl
ρdτ

)2

, (2.9)

and

ds2
S5 = l2

(
dα2 + cos2 αdβ2 +

∑

i

µ2
i

(
dξi −

ω2

4l2
σ3 +

2

ωlab
ρdτ

)2
)

, (2.10)

with

A = −
√

3

2

(
ω2

4l
σL

3 − 2

ωab
ρdτ

)
. (2.11)

The global coordinate φ and Poincare φ are related by a ρ, τ dependent transformation

which leaves the period invariant. In both coordinate systems, the geometry is that of U(1)

fibre bundle with coordinate φ over a two-dimensional base sphere with coordinates θ, ψ.

The Killing spinor is given by

ǫ = exp

[
− i

2
(ξ1 + ξ2 + ξ3)

]
exp

[
−1

2
sinh−1 ρ

b
M

]
exp

[
− i

2
MΓ49

τ

b

]
ǫ0 , (2.12)

where M = 2b
l (3

2Γ04 + l
ωabΓ09), M2 = 1 and Γ11ǫ0 = −ǫ0, Γ0149ǫ0 = iǫ0, Γ23ǫ0 = iǫ0 and

Γ57ǫ0 = −iǫ0 .

In both coordinate systems there are four independent supersymmetries that the ge-

ometry preserves which is twice the number that the full black hole sees.

2.2 Near-horizon probes

In [23], we investigated D3-brane probes without world-volume fluxes in the near horizon

geometry. In the conventions of [23] there exist giant-like anti-branes and dual giant-like

branes in Poincaré coordinates, which preserve orthogonal supersymmetries. In global

coordinates there exist BHG and B̂HG solutions preserving the same supersymmetries.

Let us denote the world-volume coordinates by σ0, σ1, σ2, σ3. The BHGs have σ1 = β,

σ2 = ξ2 and σ3 = ξ3 while B̂HGs have σ1 = θ, σ2 = φ, σ3 = ψ. In what follows, we only

review brane solutions for the case of global coordinates, rather than anti-brane solutions.
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Poincaré BHG and B̂HG. The Poincaré BHGs and B̂HGs have σ0 = t. All the em-

bedding coordinates are constant and hence H = 0. They preserve the supersymmetries

obeying Γ09ǫ0 = ǫ0 and hence are 1
2 -BPS with respect to the enhanced near-horizon su-

persymmetries. In both cases the preserved supersymmetry is the same as that of the full

black hole. After integrating over the world-volume spatial coordinates, the expression for

the non-zero conjugate momenta for BHG are

Pφ = T32π
2l2ω2 cos2 α , Pψ = Pφ cos θ , Pξ1 = T32π

2l4 cos2 α. (2.13)

Here T3 is the D3-brane tension which we dropped in our earlier paper.

For the B̂HG states the non-zero momenta are

Pξi
= T3π

2(ω2l2 + (2l2 + ω2)ω2)µ2
i , (2.14)

The second term on the r.h.s. arises from the WZ term and can be gauged away. Another

way of seeing this is to introduce a fictitious parameter in front of it and note that the

solutions are invariant under a scaling of this parameter.

Global BHG and B̂HG. Here σ0 = τ and for the BHG brane solutions, φ̇ = − 2l
ωλ while

ξ̇1 = −2ω
lλ . Supersymmetry dictates ρ = 0, i.e. the branes sit at the ‘centre’ of the global

AdS2. The BPS condition reads

HG =
2l

ωλ
|Πφ| +

2ω

lλ
|Πξ1 | , (2.15)

which is a function of α. Here2 and in what follows we have defined Πx = Px − Ax where

Ax is obtained from the WZ term by writing it as ẋAx. Later, we will denote the energy

density by H and the momentum densities corresponding to Πx’s by Px, so that

Πx =

∫

D3
Px dσ1dσ2dσ3 . (2.16)

We find the non-zero momenta

Pφ = −T3
2π2

3
l4 cos2 α , Pψ = Pφ cos θ , Pξ1 = −T32π

2l4 cos2 α , (2.17)

with T3 being the D3 brane tension. In the case of the B̂HGs, ξ̇i = −2ω
lλ and the BPS

condition reads

HDG =
2ω

lλ
(|Πξ1 | + |Πξ2 | + |Πξ3 |) . (2.18)

In this case HDG is a constant and the non-zero momenta are

Pξi
= −T3π

2ω2

[
4ω2

a2b2
− (ω2 + 2l2)

]
µ2

i . (2.19)

The second piece proportional to (ω2 + 2l2) comes from the four-form potential and does

not appear in the Π’s. Furthermore, supersymmetry analysis dictates that there exists a

2In the case of a point particle coupled to a gauge field the Hamiltonian is given by (p−A)2/2m where

p = ∂L/∂ẋ. It is the combination of (p − A) that ensures gauge invariance.
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gauge choice where this term can be gauged away and hence Πξi
= Pξi

in this case. In both

cases, the preserved supersymmetry satisfies ǫ+
0 = Γ49ǫ

−
0 for branes with Mǫ±0 = ±ǫ±0 . The

conserved spinor can be simplified to

ǫ = e∓
iτ

2b (1 ∓ Γ49)ǫ
+
0 , (2.20)

where the upper sign is for branes and the lower sign for anti-branes. The bilinear of this

spinor leads to the BPS condition

H =
2ω

lλ
(|Πξ1 | + |Πξ2 | + |Πξ3 |) +

2l

ωλ
|Πφ| , (2.21)

where we identify H = ∂τ , Πξi
= ∂ξi

and Πφ = ∂φ.

As is now clear, none of the sets of branes without fluxes has all four quantum numbers

non-zero.

The missing quantum number may be realised by electromagnetic or mechanical waves.

The former involves turning on world-volume fluxes and latter deformations of the induced

metric. If the missing quantum number is to be provided by waves, then (2.21) predicts

that for B̂HG there should be a wave along φ direction with velocity 2l
ωλ while for BHG

there should a wave along ξ2 + ξ3 direction with velocity 2ω
lλ . We will see that this is

precisely the case.

3. Counting giants3

The promotion of the BPS condition (2.21) to a quantum condition suggests that the

resulting quantum state may contain both giant and dual giant parts. If there is a duality

between the two, which has yet to be established in the black hole context, then it should

be possible to describe the quantum states using dual giants or giants alone. In this section

we quantise the B̂HG space of solutions in global coordinates described above and compare

the result to the macroscopic entropy formula (1.1). If we counted the Poincaré B̂HGs we

would get a divergence since all values of r give the same energy.

The microstates of the black hole are conjectured to be a collection of giant and/or

dual giant gravitons. These branes correspond to D3-dipoles and carry no net charge

but they will still locally excite the five-form field. Hence when integrated over a small

five-dimensional surface which encloses a portion of the wrapped brane, the result will be

proportional to the number of D3-branes enclosed [27]. With this picture in mind, we will

integrate components of F over various spatial coordinates and use
∫

F = 16πG10T3 n , (3.1)

with n ∈ Z in order to determine quantisation conditions. Using

G10 =
π4l8

2N2
, T3 =

N

2π2l4
, (3.2)

3We thank N. Suryanarayana for collaboration in this section
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we have

16πG10T3 =
4π3l4

N
. (3.3)

Here N is an integer obtained after integrating Fαβξ1ξ2ξ3 = 4l4 cos3 α sinα sin β cos β. Inte-

grating

Fθφψαξ1 =
q

16
sin θ sin α cos α (3.4)

with q = −2ω2(ω2 + 2l2) which is proportional to the electric charge gives

N

2l4
ω2(ω2 + 2l2) = n1 =

N |q|
4l4

, (3.5)

while integrating

Fφαβξ1ξ2 = −ω2l2 cos3 α sinα sin β cos β , (3.6)

gives
Nω2

2l2
= n2 . (3.7)

These together imply that Nω4

2l4
=

2n2

2

N is also an integer. Note that n1 and n2 are not

independent but satisfy n1 = 2n2 + 2n2
2/N . In terms of n2, the entropy can be rewritten

as

SBH = π

(
Nω2

l2

)3/2
√

N +
3Nω2

4l2
= 2π

√
2n3

2

(
N +

3

2
n2

)
. (3.8)

Here we have used V5 = π3l5 and G10 = V5G5. We want to compare this entropy to

a microscopic state counting using the microstates described in section 2. The gauge-

invariant Hamiltonian for a single dual giant is given by (2.18). Furthermore, by solving

the κ-symmetry constraint as in [23, 26, 28, 29], one can show that supersymmetry dictates

the following constraints

ρ = 0 , Pρ = 0 , Πα = 0 , Πβ = 0 , Πξi
− cµ2

i = 0 , (3.9)

where

µ2
1 + µ2

2 + µ2
3 = 1 , (3.10)

which can be treated as an additional constraint. Here

c = − V3

8π2

Nω4

l4

(
1 +

3ω2

4l2

)
= − V3

8π2

4n2
2

N

(
1 +

3n2

2N

)
. (3.11)

Here V3 is the volume factor obtained after integrating over the spatial world-volume coor-

dinates. The integration over the full range gives 16π2. We will leave it undetermined for

now. Following Dirac’s procedure for 2nd class constraints, one can simply drop ρ, Pρ from

the phase space. After quantisation, the remaining constraints can be thought to be im-

posed on the Hilbert space satisfying the gauge-invariant bracket [Πa, x
a] = −i. Demanding

this canonical commutation relation gives us

[cµ2
i , ξj ] = −iδij . (3.12)

– 7 –
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Defining the classical variables ζi =
√

|c|µie
iξi and promoting them to quantum operators

gives us the oscillator brackets4

[ζi, ζ
†
j ] = δij . (3.13)

This leads to writing the quantum Hamiltonian as

H =
2ω

lλ
(ζ†i ζi) =

2ω

lλ
(N1 + N2 + N3) . (3.14)

Now imposing the restriction µ2
1 + µ2

2 + µ2
3 = 1 we see that the quantum states created by

these oscillators are

|N1 , N2 , N3〉 =

3∏

i=1

(ζ†i )
Ni

√
Ni!

| vac〉 (3.15)

with occupation numbers satisfying

N1 + N2 + N3 = |c| . (3.16)

Thus we have constructed the Hilbert space of a constrained three-dimensional harmonic

oscillator.

Instead of directly imposing the quantum commutator brackets we can also proceed

by applying Dirac’s procedure to deal with second-class constraints [31, 30, 26, 28]. Im-

posing (3.10) on the classical phase space implies the relation

Πξ1 + Πξ2 + Πξ3 = c ,

which is a first-class constraint. Thus we can take

Πα = 0 , Πβ = 0 , Πξ2 = cµ2
2 , Πξ3 = cµ2

3 (3.17)

as a system of second-class constraints. We define the Poisson brackets as {f, g}PB =
∂f
∂Π

∂g
∂x − ∂f

∂x
∂g
∂Π , which is the classical equivalent to the quantum condition [Πa, x

a] = −i.

This procedure can be justified by realizing that there exists a gauge for the four form C(4)

and thus for the effective gauge potential A, in which the term giving rise to the q-piece

in the momentum constraint drops out. Following this procedure, we get the following

commutator brackets

[cµ2
p, ξq] = −iδpq , p, q = 2, 3 . (3.18)

With these we can define two oscillators ζ2 =
√

|c|µ2e
iξ2 , ζ3 =

√
|c|µ3e

iξ3 which satisfy the

algebra of two commuting simple harmonic oscillators. This then yields

|Π1| = |c| − N2 − N3 , (3.19)

as before. Thus we again end up with the Hilbert space of a constrained three-dimensional

harmonic oscillator, whose state counting is a three-coloured partitioning problem.

Integrating over a five-dimensional surface transverse to the dual-giant world volume

will give us the total number of dual giants allowed in the geometry. The transverse

4The role of creation and annihilation operators gets interchanged when considering anti-branes.
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coordinates are α, β, ξi and this leads to the maximum number of dual giants to be N .

When we consider M multiple dual giant probes, we need to satisfy [26, 28, 29]

M∑

i

(
N

(i)
1 + N

(i)
2 + N

(i)
3

)
= M |c| . (3.20)

In terms of the integer n2 and N the right-hand side can be rewritten as

V3

8π2

4Mn2
2

N2

(
N +

3

2
n2

)
. (3.21)

We need the three-coloured partition of this in the limit N ≫ M ≫ 1 which will give the

entropy

SB̂HG
probes = 2π

√
V3

8π2

2Mn2
2

N2

(
N +

3

2
n2

)
. (3.22)

Note that for this argument to make sense we need to make sure that the integer we are

partitioning is much less than M as this is the upper limit on the sum. This leads to the

condition ω ≪ l. When M = N and with V3 = 16π2, we can associate this factor with the

Landau degeneracy of BHG. For giants

Πφ = Pφ − Aφ = Pφ + T3
π2

2
ω2l2 cos4 α ,

Πξ1 = Pξ1 − Aξ1 = Pξ1 − 2T3π
2l4 cos4 α . (3.23)

Thus the maximum integral quantum number associated with the state annihilated by Pφ

is n2/2 and that with Pξ1 is N . There is an additional factor of 2 corresponding to the

additional giant solutions [23] found at θ = 0, π which carry the same quantum numbers.

In total we have a degeneracy factor of Nn2. It remains to be seen if this is merely a

coincidence. One possibility is that this degeneracy is to be perceived as the ground state

degeneracy for each dual giant and hence 3Nn2 colours rather than 3. Putting together all

the ingredients above, we get Sprobes = 2SBH.

Eventually we would like a more rigorous justification for this missing degeneracy we

observed above. The next obvious question to ask is: What happens when one switches

on world-volume electromagnetic flux? Since this is known to provide angular momentum,

it is natural to suspect that the missing quantum number, in this case associated with Πφ

may arise from the electromagnetic field. Let us suggest the following way of counting

motivated by [14] which leads to the same relation between Sprobes and SBH as in this

section.

Adding a fourth quantum number. When we have Πφ turned on, either by electro-

magnetic waves (as shown in section 4) or otherwise, the BPS relation suggests

Πφ +
ω2

l2
(Πξ1 + Πξ2 + Πξ3) = P , (3.24)

where P denotes the total momentum. Meanwhile, we have from the probe analysis

Πξ1 + Πξ2 + Πξ3 = n . (3.25)

– 9 –
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This partitioning of n into three integer-valued momenta can be accomplished in n2/2 ways

when n is large. This can be achieved by taking ω ≪ l, but N ≫ 1. As we will show in

later sections Πφ can be constructed out of two integers and hence keeping P fixed can be

realized in P − ω2

l2 n ways. Thus the total number of ways of satisfying the above conditions

is given by
n2

2

(
P − ω2

l2
n

)
, (3.26)

which is maximised w.r.t n for Πφ = ω2

2l2
n which can be small compared with n and hence

can be thought of as arising from small fluctuations. Now we anticipate that this momen-

tum is going to be carried by open strings which are MN in number since there are M

dual giant probes and N dual giants making the black hole. The bosonic moduli corre-

sponding to α, β and fermionic moduli corresponding to the 2 preserved supersymmetries

will contribute a factor of 3. The microscopic entropy arising from the partitioning of Πφ

is given by

Sprobes = 2π

√
3ΠφMN

6
= 4π

M

N

√
2n3

2

(
N +

3

2
n2

)
= 2

M

N
SBH , (3.27)

when5 n = M |c|. Let us now explain why this relation is expected.

What does Sprobes count? Let us observe that SBH scales in terms of the number of

dual giants N like SBH = f (ω, l) N2. In the analysis leading to (3.27) we computed the

entropy associated with inserting M probe branes into the near-horizon geometry of the

black hole. When we insert M probes in the black hole geometry, these will form a new

bound state with a higher entropy proportional to (M + N)2. The open string degrees

of freedom associated with this new bound state are MN in number. The M2 and N2

open strings ending on the same type of branes take into account the degrees of freedom

associated with separating the objects. We are associating the degeneracy of the probes

with the number of ways that the MN open strings can carry Πφ. Then our computation

should correspond to the difference in the entropy of the new bound state made of M + N

branes and the entropy when the probe and the black hole are far apart. This is given by

Sprobes = f(ω, l)
[
(N + M)2 − N2 − M2

]
= 2NMf(ω, l) = 2

M

N
SBH . (3.28)

Taking N = M , we arrive at the conclusion that Sprobes = 2SBH, the result that emerged

from two independent computations above. We emphasise that our identification of dual

giants gravitons and black hole microstates is conjectural, but we take the above results as

encouraging evidence for such a connection. Eventually, it will be important to understand

why dual giants, which are objects expanding in AdS are a valid microscopic description

of a black hole.

We must also remind the reader that we have not demonstrated the counting by quan-

tisation of the phase space of the BPS waves directly which we will leave as an open

5There may be an overall O(1) factor having to do with the subtlety in counting independent open string

states stretched between giants (see [32]) present.
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problem. However, the existence of waves carrying the right velocity which preserve the

same supersymmetry as the non-fluxed solution makes it very plausible that the above

argument is at least on the right track.

To provide more evidence, we now need to demonstrate the existence of BPS modes

carrying Πφ which we turn to in the next section.

4. Supersymmetry and world volume fluxes

In this section we want to investigate the possibility of preserving some fraction of super-

symmetry for D3-branes with non-trivial world-volume gauge field configurations.6 These

are governed by an action of the form

L = −T3

∫ √
− det(h + F ) d4σ ∓ T3

∫
C(4) , (4.1)

where in accordance with [23], the upper sign stands for a brane and the lower sign for an

anti-brane and C(4) is the pull back of the space-time four form potential. We shall inves-

tigate the question of supersymmetry from the point of view of world-volume κ-symmetry

transformations. In the presence of world-volume flux, the supersymmetry condition for a

D3-brane is [34, 35]

Γǫ = ǫ , (4.2)

with the general κ-symmetry projector

Γ =
ǫijkl

√
−det(h + F )

(
1

4!
γijklI − 1

4
FijγklJ +

1

8
FijFklI

)
, (4.3)

where

Iǫ = −iǫ , (4.4)

Jǫ = iǫ∗ . (4.5)

For an anti-brane the right hand side of (4.2) has the opposite sign. Note that this simplifies

to the condition (6.2) of [23] in the absence of world-volume fluxes, as required. Since we

want to preserve the same supersymmetries as in the F = 0 case in [23], we must demand

that

ǫijklFijγklǫ
∗ = 0, ǫijklFijFkl = 0 . (4.6)

Define the world-volume field strength tensor as

F =




0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0


 . (4.7)

6For earlier work on world-volume fields in the context of giant gravitons see [33].
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Since we are in four space-time dimensions we can split F into electric and magnetic fields.

Then the second of the conditions (4.6), i.e. F∧F = 0, implies that E and B are orthogonal

to each other. The first condition above implies

(E1γ23 − E2γ13 + E3γ12 + B3γ03 + B2γ02 + B1γ01)ǫ
∗ = 0 . (4.8)

After solving the supersymmetry constraint, it is still necessary to check the equations

of motion. The embedding coordinates’ equations of motion follow from varying the ac-

tion (4.1). We choose to work in static gauge, aligning the four world-volume coordinates

with certain space-time coordinates. Which set of space-time coordinates we choose will

vary from case to case. The gauge field equations of motion are compactly given by the

expression [36]

∂i

(√
− det(h + F )

{
(h + F )−1 − (h − F )−1

}ij
)

= 0 . (4.9)

Finally, the Bianchi identities of the world-volume gauge fields, dF = 0 must also be

satisfied.

As a warmup to the near-horizon geometry, but also because the result is interesting

in its own right, we shall now analyse dual giant gravitons in AdS5×S5 with world-volume

fluxes. In [25], giant-graviton configurations in AdS5×S5 were constructed following the

method of Mikhailov [37]. There is was found that it is possible to excite electric and

magnetic fields on the brane without breaking any further supersymmteries. The gauge

fields obey wave equations and contribute a momentum to the BPS relation via their

Poynting vector. We realise this scenario on dual giant gravitons and find that turning on

fluxes on dual 1
8 -BPS giant gravitons breaks the supersymmetry further to 1

16 , at least for

the type of configuration we study.

4.1 Fluxes on 1
8 BPS dual giants in AdS5× S5

We will closely follow [26] and the reader is referred to it for more details. The AdS5×S5

metric is

ds2 = −V dt2 +
1

V
dr2 +

3∑

i=1

r2

4

(
σL

i

)2
+ l2

(
dα2 + cos2 αdβ2 +

3∑

i=1

µ2
i dξ2

i

)
, (4.10)

where V = 1 + r2

l2
, µ1 = sin α, and {µi} and

{
σL

i

}
have the same meaning as in section 2.

After a coordinate transformation we can write the 3-sphere metric in the alternative form

r2(dθ2 + cos θ2dφ2
1 + sin θ2dφ2

2) . (4.11)

The world-volume coordinates are labelled by σi with i = 0, 1, 2, 3. We choose static gauge

such that t = σ0, θ = σ1, φ = σ2, ψ = σ3. The world-volume gamma matrices for AdS5

dual giants in the coordinates of (4.10) are

γ0 = V 1/2Γ0 +
∑

µiΓ6+i , γ1 =
r

2
(sin φΓ2 + cos φΓ3) ,

γ2 =
r

2
Γ4 , γ3 = cos θγ2 −

r

2
sin θ(sinφΓ3 − cos φΓ2) . (4.12)
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In terms of the coordinates of (4.11), i.e. {t, r, θ, φ1, φ2} these gamma matrices are

γ0 = V 1/2Γ0 +
∑

µiΓ6+i , γ1 = rΓ2 ,

γ2 = r cos σ1Γ3 , γ3 = r sin σ1Γ4 . (4.13)

In these coordinates the induced metric is diagonal. 1
8 -BPS dual giants without gauge fields

satisfy

γ0γ1γ2γ3ǫ = −i
√
− deth ǫ , (4.14)

where h is the induced metric on the world-volume of the brane. The spinor ǫ is subject

to the projection conditions

Γ09ǫ = ǫ , Γ68ǫ = iǫ , Γ57 = iǫ . (4.15)

We now wish to preserve a fraction of supersymmetry with non-trivial gauge fields. In

order to solve (4.2) with Γ given by (4.3), we need to satisfy

ǫijklFijγklǫ
∗ = 0 . (4.16)

In terms of (4.13) this condition becomes

[(
E1 − i

√
−h

h22h33
B1

)
γ23 −

(
E2 − i

√
−h

h11h33
B2

)
γ13 +

(
E3 − i

√
−h

h11h22
B3

)
γ12

]
ǫ∗ = 0 .

(4.17)

By equating real and imaginary part of this equation to zero individually it follows that

without imposing any further projection conditions, we need to set E = B = 0. However, if

we impose the additional projection Γ23ǫ = iǫ in the basis (4.12), then gauge fields obeying

E2 = 0 , B3 cos θ = −B2 , E1 = −2

l
B3 , E3 =

2

l
B1 . (4.18)

solve the κ−symmetry condition including world-volume fluxes. Because of the extra pro-

jection condition, turning on the gauge field leads to breaking more supersymmetries. In

the specific case above it leads to 1
16 -BPS states. As a consequence of supersymmetry, this

configuration has E · B = 0 . The equations of motion for the embedding coordinates are

solved by ξ̇i = 1
l , α̇ = β̇ = ṙ = 0, if the fields satisfy the equation

∂0Bi −
2

l
∂2Bi = 0 , i = 1, 3 . (4.19)

Hence we have waves moving with phase velocity 2/l in the φ direction. Finally, the gauge

field equations of motion with the Bianchi identities give

sin θ∂θ(E1 sin θ) − cos θ∂φE3 + ∂ψE3 = 0 ,

∂θE3 − ∂ψE1 + ∂φE1 cos θ = 0 . (4.20)

As we will show in the next section these equations can be expressed compactly in terms

of CP 1 coordinates when the 3-sphere metric is explicitly written as a Hopf fibration. In
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this picture the waves propagate along the fibre. With the constraints (4.18), we have the

dramatic simplification √
− det h =

√
− det(h + F ) . (4.21)

These are analogous to the waves on 1
8 -BPS giant gravitons analysed by [25] with the

difference that there the inclusion of waves did not break any further supersymmetries.

The gauge field contributes canonical momenta

PE1
=

∂L
∂E1

= T3B3 sin θ , PE2
=

∂L
∂E2

= T3B1 cot θ , PE3
=

∂L
∂E3

= −T3B1 csc θ .

(4.22)

The Hamiltonian density is given by

H =
1

l

[
|2Pφ| +

3∑

i=1

|Pξi
|
]

, (4.23)

where

Pφ = B1PE3
− B3PE1

. (4.24)

and

Pξi
= −T3

[
l2

r2 sin θ
(B2

1 + B2
3 sin2 θ)µ2

i + r2l2µ2
i sin θ

]
. (4.25)

The angular momentum of the gauge field has introduced a new quantum number in addi-

tion to (J1, J2, J3) leading to the four-tuple (S1, J1, J2, J3). When counting the degeneracy

of such states, one focuses on states of fixed energy. Since the Hamiltonian is r dependent,

there is a certain energy for each r, Pφ . The total number of ways of choosing r, Pφ to

achieve this energy after quantisation corresponds to the degeneracy of these solutions. If

Pφ = 0 then each value of r corresponds to a different energy and the degeneracy is unity.

With Pφ 6= 0 turned on, we get a larger degeneracy since now different choices for r, Pφ

can give the same energy. It would be interesting to carry out the quantisation of the new

phase space and count these objects. We will not attempt to do so in this paper. However,

let us attempt to motivate how these asymptotic states could be used to account for the

microscopic entropy. Firstly, we have

El = 2Pφ + Pξ1 + Pξ2 + Pξ3 , (4.26)

with

Pξ1 + Pξ3 + Pξ3 = n , (4.27)

which can be realized in n2/2 ways. It is natural to identify E with the mass of the black

hole which is known to be

M =
3πω2

4G5

(
1 +

3ω2

2l2
+

2ω4

3l4

)
. (4.28)

The total number of ways in which the above constraints can be satisfied is (El − n)n2/2

ways which is maximised when El = (3/2)n. Comparing now the mass of the black hole

with this, we have

n =
ω2N2

l2

(
1 +

3ω2

2l2
+

2ω4

3l4

)
, (4.29)
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with Pφ = n/4. Assuming now that this is carried by N2 open strings with a central charge

of 3 arising from α, β and 2 supersymmetries, we have the microscopic entropy given by

Smicro = 2π

√
ω2N4

4l2

(
1 +

3ω2

2l2
+

2ω4

3l4

)
, (4.30)

which agrees with SBH to leading order when ω ≪ l but differs at higher orders. It will

be nice to derive the analogous formula by quantising the phase space of solutions rather

than by this indirect way.

4.2 General solution

It will turn out that the differential equations obeyed by the BHG and B̂HG configurations

we are about to investigate can be transformed into an equivalent form both in Poincarè and

global coordinates. Before we analyse particular instances of BHG and B̂HG configurations,

we present here the general solution to these equations. Let us introduce the complex

variable

z = 2eiψ tan
θ

2
. (4.31)

Then

∂θ =
1√
zz̄

(
1 +

zz̄

4

)
(z∂z + z̄∂z̄) , (4.32)

and

∂ψ = iz∂z − iz̄∂z̄ . (4.33)

For later convenience let us briefly describe the geometry of these coordinates, in terms of

which the metric on a squashed three sphere of radius R reads

dΩ2
3 =

R2

4

[
16dzdz̄

(4 + zz̄)2
+ q2(dφ + A(z, z̄))2

]
, (4.34)

where A is a one form that lives purely in the CP 1 base, parametrised by z and z̄. We

have

A =
1

2iV

(
z−1dz − z̄−1dz̄

)
. (4.35)

Here

V =
4 + zz̄

4 − zz̄
. (4.36)

The squashing parameter q is unity for the round three sphere and is determined for the

solutions, together with the radius R, in terms of the AdS length l and rotation parameter

ω. The equations we want to solve take the form (4.20) and can be compactly written as

2V z∂zG = −i∂φG , 2V z̄∂z̄Ḡ = i∂φḠ , (4.37)

where G is a complex field, in the AdS5 case of the previous section, G = E3 + i sin θE1.

Evidently one is the complex conjugate of the other. We now obtain the general solution
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of (4.37). We expand G(z, z̄;φ) in eigenmodes of the ∂φ operator, keeping in mind the 4π

periodicity of φ:

G(z, z̄;φ) =
∞∑

k=−∞

Gk(z, z̄)e−
ik

2
φ . (4.38)

This leads to the equation

∂z ln Gk(z, z̄) =
ik

2
Az(z) (4.39)

with solution

Gk = ḡk(z̄) exp

[
ik

2

∫
Azdz

]
. (4.40)

Here ḡk(z̄) is an arbitrary anti-holomorphic function, i.e. independent of z. Regularity at

θ = 0, π dictates that it take the form

ḡk(z̄) =

k/2∑

n=−k/2

ak,nz̄n . (4.41)

Here k is an integer, so that the allowed values for n are integers and half-odd integers.

giving a degeneracy of 2k + 1 for each k. Thus for a given φ momentum k we have a

degeneracy of 2k + 1 in the sense that there are 2k + 1 “independent” coefficients that

determine Ḡ. The electromagnetic fields on the BHGs and B̂HGs may be quantised by

treating them as small fluctuations around the zero-field vacuum in a fashion analogous

to [12]. Upon quantisation the expansion coefficients ak,n and a∗k,n become creation and

annihilation operators, from which we may construct two additional number operators that

correspond to the excitations of the complex field G.

The integral in (4.40) may be done explicitly yielding

Gk(z, z̄) = ḡk(z̄)

[
zz̄

(4 + zz̄)2

] k

4

. (4.42)

4.3 Black hole giants with fluxes

We now turn to specific examples of compact D3-brane configurations with non-trivial

world-volume fluxes in the near-horizon geometry. The analysis in the sections below

applies to the case of a brane.

4.3.1 Global B̂HG

Consider a D3-brane with world-volume coordinates σ = {τ, θ, φ, ψ} in static gauge. Fur-

thermore, we assume that the embedding coordinates Xm(σ0) depend on time only and

obey

ψ̇ = 0, φ̇ = 0, ξ̇i = −2ω

lλ
α̇ = 0 ρ̇ = 0 (4.43)

In the absence of flux, supersymmetry further dictates ρ = 0, a feature that carries to the

fluxed solutions. It can be shown (see appendix for details of the computation) that (4.8)

leads to the condition that the fields satisfy

E2 = 0 , B3 cos θ = −B2 E1 = − 2l

ωλ
B3 , E3 =

2l

ωλ
B1 . (4.44)
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With these constraints there occurs a significant simplification of the on-shell DBI action.

We find that √
− det (h + F ) =

√
− deth .

Furthermore, it is evident that the field configurations above satisfy E · B = 0 . From

these relations it follows that these solutions preserve the same supersymmetries as the

un-fluxed case found in [23]. We now demonstrate that the above configurations are indeed

solutions to the equations of motion subject to certain further equations that can be solved

in general. The equations of motion for the embedding coordinates can be shown to be

satisfied if the two independent components (we choose to solve the constraints for E1 and

E3) of the field strength satisfy

∂0Ei −
2l

ωλ
∂2Ei = 0 , i = 1, 3 . (4.45)

From the supersymmetry constraints above it follows that the Bi satisfy a set of analogous

equations. In addition to these we must also make sure that the gauge field on the brane

obeys the Bianchi identities

∂2E1 −
ωλ

2l
∂0E1 = 0 , ∂2E3 −

ωλ

2l
∂0E3 = 0 ,

∂3E1 − ∂1E3 −
ωλ

2l
∂0E1 cos θ = 0 , ∂3E1 − ∂1E3 − ∂2E1 cos θ = 0 .

(4.46)

and equations of motion (4.9). The first two are identical to the coordinate equations

of motion. Combining the non-trivial information from the Bianchi identities with the

gauge-field equations of motion leaves us with solving the system of partial differential

equations

sin θ∂1(E1 sin θ) − cos θ∂2E3 + ∂3E3 = 0 ,

∂1E3 − ∂3E1 + ∂1E1 cos θ = 0 . (4.47)

Note that these are precisely the same as (4.20). The time dependence is given by (4.45), so

that Ei(τ, φ, ψ) = Ei(σ
+, ψ), where we have defined the light-cone variable σ+ = 2l

ωλτ + φ.

Thus, physically, these solutions correspond to waves travelling with a phase-velocity

that is exactly in accordance with the general BPS relation (2.21).

The gauge field gives rise to the conjugate momentum densities

PE1
=

∂L
∂E1

= −T3B3 sin θ ,

PE2
=

∂L
∂E2

= −T3B1 cot θ ,

PE3
=

∂L
∂E3

= T3B1 csc θ . (4.48)
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The Hamiltonian density is

H =
2l

ωλ
|Pφ| +

2ω

lλ

3∑

i=1

|Pξi
| , (4.49)

where Pξi
denote unintegrated Πξi

with

Pφ = B1PE3
− B3PE1

(4.50)

and

Pξi
= −T3

( ω

4l

)2
µ2

i csc θ
[
12λ2|G|2 + ω2(4l2 + 3ω2) sin2 θ

]
, (4.51)

We have defined the quantity

G = E3 + i sin θE1 . (4.52)

Equation (4.49) reproduces the BPS condition (2.21) with all four charges. Notice

that three of the charges are realized as ‘orbital’ angular momenta of the classical brane

motion, whereas one is realized in terms of angular momentum carried by the gauge field

on the brane. Rewriting (4.47) in terms of the new complex variables and taking linear

combinations leads precisely to equations (4.37), whose solutions were obtained above.

4.3.2 Poincaré B̂HG

We shall now work in the coordinate system (2.3). Let us consider a D3-brane with world

volume coordinates σ = {t, θ, φ, ψ}, where t is AdS2 Poincaré time as defined in [23].

We assume static gauge and in addition that the remaining embedding coordinates are

functions of σ0 only. They satisfy

ξ̇i = α̇ = β̇ = 0 (4.53)

From the analysis in [23] it follows that these satisfy γ0ǫ
∗ = 0. Using this, we find that (4.8)

implies

Ei = 0 , B2 + B3 cos θ = 0 (4.54)

with B1 unconstrained by supersymmetry. Here, the equations of motion and Bianchi

identities reduce to the equations

∂1B1 − cos θ∂2B3 + ∂3B3 = 0 ,

sin θ(∂1(sin θB3)) − ∂3B1 + cos θ∂2B1 = 0 , (4.55)

where all fields are time-independent as a result of the remaining Bianchi identities. Notice

that the gauge field configuration on this kind of brane is like a ‘snapshot’ of the propagating

wave found on the dual giant in global AdS2 coordinates above. Defining G = B1+i sin θB3

and taking linear combination again yields (4.37). The mechanical momentum densities

are

Pξi
= T3

(
l

4ω

)2

csc θ
[
16|G|2 + ω4 sin2 θ

]
µ2

i , (4.56)
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while the field gives rise to

PE1
=

∂L
∂E1

= T3B3 sin θ , PE2
=

∂L
∂E2

= T3B1 cot θ , PE3
=

∂L
∂E3

= −T3B1 csc θ .

(4.57)

As their un-fluxed counterparts, these configurations satisfy the BPS relation H = 0. Let

us now turn to giant-like configurations, i.e. configuration that wrap a submanifold in the

S5 part of the geometry.

4.3.3 Global BHG

Let us consider a giant-like configuration with world-volume coordinates σ = {τ , β , ξ2 , ξ3}.
We want to put a non-trivial gauge field configuration on the solution in [23] with

ψ̇ = 0, φ̇ = − 2l

ωλ
, ξ̇1 = −2ω

lλ
α̇ = 0 ρ̇ = 0 (4.58)

The supersymmetry constraints are solved by the relations

E2 = −E3 = −2ω

lλ
B1 , B3 = −B2 tan2 β , E1 cos2 β =

2ω

lλ
B2 . (4.59)

The fact that F ∧ F vanishes is again telling us that the electric and magnetic fields are

perpendicular to one another. With these solutions, we see that again
√

− det(h + F ) =
√

− det(h) ,

so that the same linear combination of supercharges is preserved with flux, as without

flux. Thus, indeed we have an EM-wave running in the directions ξ2 and ξ3. The Bianchi

identities and coordinate equations of motion determine the time dependence of the waves

to be

∂3Ei + ∂2Ei =
lλ

2ω
∂0Ei , i = 2, 3 . (4.60)

The phase velocity of the waves, 2ω
lλ , is again exactly as expected from the BPS condi-

tion.

The gauge field equations of motion (4.9) together with the Bianchi identities on the

configuration under consideration here lead to the system of equations

sin 2β∂1(sin 2βE1) − 2∂3E2 + 2∂2E2 +
lλ

2ω
cos 2β∂0E2 = 0 ,

∂2E1 − ∂3E1 − 2∂1E2 +
lλ

ω
cos 2β∂0E1 = 0 . (4.61)

Upon identifying 2β → θ, ξ2 − ξ3 → ψ and ξ2 + ξ3 → φ we can recast this computation

into the standard form above. The quantity G = 2E2 + i sin 2βE1 satisfies (4.37).

The mechanical momentum densities pick up contributions due to the field:

Pφ = −T3
l2

24ω2

1

sin 2β cos2 α

(
λ2|G|2 + ω2 cos4 α sin2 2β(4l2 + 3ω2 cos2 α)

)
, (4.62)

Pψ = cos θPφ , (4.63)

Pξ1 = −T3
l2

8ω2

tan2 α

sin 2β

(
λ2|G|2 + 4l2ω2 cos4 α sin2 2β

)
. (4.64)
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Note that in the absence of G, there was an upper bound in the momenta. Since α runs

between 0 and π/2 there is no such upper bound any more. This seems to hint at the

interpretation of fluxes on giants as descendants [15]. However since AdS5 dual giants

with fluxes are not analogous to their S5 counterparts, the corresponding interpretation of

fluxes on dual giants as descendants is less clear. The gauge field degrees of freedom have

conjugate momentum densities

PE1
=

∂L
∂E1

= T3B2 tan β , PE2
=

∂L
∂E2

= −T3B1 cot β , PE3
=

∂L
∂E3

= T3B1 tan β .

(4.65)

The Hamiltonian density gives rise to the BPS relation

H =
2l

ωλ
|Pφ| +

2ω

lλ

3∑

i=1

|Pξi
| , (4.66)

where

Pξ2 = B3PE1
− B1PE3

, Pξ3 = B1PE2
− B2PE3

. (4.67)

4.3.4 Poincaré BHG

Solving the supersymmetry constraints for D3 branes wrapping {t, β, ξ2, ξ3} in AdS2

Poincaré coordinates, where ξ̇1 = θ̇ = φ̇ = ψ̇ = ṙ = 0 , results in the constraints

Ei = 0, B3 + tan2 β B2 = 0 (4.68)

with B1 unconstrained. Taking note of fact that γ0ǫ
∗ = 0 (see [23]) simplifies the calcu-

lation. The DBI part of the action on this class of solutions again simplifies in the same

way as above. The equations of motion for an anti-brane and associated Bianchi identities

reduce to

∂2B2 − cot2 β∂3B2 + ∂1B1 = 0 ,

∂1(tan βB2) + ∂3 tan βB1 − ∂2 cot βB1 = 0 (4.69)

with all magnetic field components time-independent. Defining the auxiliary variables

B2 =
lλ

2ω
cos2 βG1 , G2 = −G3 = −2ω

lλ
B1 .

and identifying 2β → θ, ξ2 − ξ3 → ψ and ξ2 + ξ3 → φ, after some algebra, transforms the

equations into standard form (4.37) in terms of the complex field G = 2G3 + i sin 2βG1.

The mechanical momentum densities pick up contributions due to the field:

Pφ = T3
1

8 sin 2β cos2 α
(λ2|G|2 + l2ω2 cos4 α sin2 2β(4 − cos2 α)) , (4.70)

Pψ = cos θPφ , (4.71)

Pξ1 = T3
l2

8ω2

tan2 α

sin 2β
(λ2|G|2 + 4l2ω2 cos4 α sin2 2β) . (4.72)
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As in the global case, the Pi do not have upper limits any more. The gauge field degrees

of freedom have conjugate momentum densities

PE1
=

∂L
∂E1

= T3B2 tan β , PE2
=

∂L
∂E2

= −T3B1 cot β , PE3
=

∂L
∂E3

= T3B1 tan β .

(4.73)

The solutions satisfy the BPS relation H = 0 in terms of their conjugate momenta as

expected from the Killing spinor bilinear.

5. Discussion

In this paper we discussed microstates in the near-horizon geometry of a 1
16 -BPS AdS5 black

hole. We counted dual giant configurations in the probe approximation by quantising the

phase space of solutions. The result missed the macroscopic entropy by a degeneracy factor.

We argued that turning on an additional angular momentum quantum number, achieved

in this paper by world-volume fluxes and dictated by the near-horizon supersymmetry, can

potentially produce the correct statistical entropy.

We found a whole class of solutions preserving exactly the same supersymmetry as

those without fluxes. These solutions are BPS electromagnetic waves and are entirely

consistent with the supersymmetries of the near-horizon geometry. They have precisely

the velocity predicted by supersymmetry and exist on the world volumes of both giants

and dual giants. The resulting configurations carry all four quantum numbers dictated

by supersymmetry. We also demonstrated that world-volume fluxes on 1
8 -BPS dual giants

in AdS5× S5 will generically lead to 1
16 -BPS configurations with an additional quantum

number. It will be interesting to consider the partition functions of these states along the

lines of [26].

The global B̂HG configurations in this paper may be viewed as the caps of the mi-

crostates of the full black hole in the fuzzball [38] proposal.7 It will be very interesting

to consider the quantisation of the new space of near-horizon solutions and to see if the

macroscopic entropy is reproduced. A simple minded maximisation argument was shown

to lead to an exact match with the macroscopic entropy although we should emphasise that

this cannot be construed as a satisfactory derivation as yet. What was crucial in this argu-

ment was the existence of the additional angular momentum quantum number, one source

of which are the electromagnetic waves. There could be other sources such as vibrational

modes which we have not ruled out. A related puzzle is that fluxes on 1/8AdS5 ×S5 giants

are to be thought of as descendants [15] and as such would lead to double counting. If the

same interpretation extends to 1
16 -BPS AdS5 dual giants with fluxes, then these should be

thought of as descendants of some chiral primary operators presumably corresponding to

BPS vibrational modes [39]. However, since electromagnetic waves broke supersymmetry in

the dual giant case, that this analogy holds is not clear to us. Although it is expected that

BPS fluctuations or mechanical waves also should play a role in the counting of microstates,

it is not implausible that the electromagnetic waves are just a dual description of these

7We thank N. Suryanarayana for suggesting this to us.
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mechanical waves. Electromagnetic flux is related to open strings while the vibrational

modes are related to the metric, so this would be similar in spirit to open-closed duality.

Since it appears that finding solutions for mechanical waves is considerably harder, one

could hope that counting the electromagnetic waves in a systematic way could reproduce

the same result. Our analysis should be useful in studying these issues further.
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A. Details of computations for dual giants

In this appendix we supply more detail on the supersymmetry analysis whose results were

quoted in section 4.3.1. On the dual giant wrapping {τ, θ, φ, ψ} in AdS2 global coordinates,

we have the induced metric

h =




−1 + J2l2 0 −Jω2

4 −1
4Jω2 cos σ1

0 ω2

4 0 0

−Jω2

4 0 ω2(l2+ω2)
4l2

ω2(l2+ω2)
4l2

cos σ1

−1
4Jω2 cos σ1 0 ω2(l2+ω2)

4l2 cos σ1
ω2(2l2+ω2+ω2 cos 2σ1)

8l2


 (A.1)

where J = ∓2ω
lλ for a brane /anti brane. We wish to preserve the same linear combinations

of supercharges as in the unfluxed case, discussed in [23]. The preserved Killing spinor

satisfies the relation

(h02 − γ0γ2)ǫ = −bǫ ,

so that

γ0ǫ
∗ = −b + h02

h22
γ2ǫ

∗ . (A.2)

Using this we find that the vanishing of the ǫijklFijγkl term in the κ symmetry projector

sets

[
E1(−γ3γ2 + h23) + E2γ1γ3 + E3γ1γ2 + B3

(
b + h02

h22
γ3γ2 + h03

)
+ (A.3)

(
b − Jω2

2

)
B2 − B1

b + h02

h22
γ1γ2

]
ǫ∗ = 0 .
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Using the explicit form of the world-volume gamma matrices, we compute the various terms

appearing above.

−γ3γ2 + h23 =
ω2

4l
sin θ(sinφΓ3 − cos φΓ2)

(
ω

2
Γ9 +

l

ab
Γ4

)
,

b+h02

h22
γ3γ2+h03 =

(
b− Jω2

2

)
cos θ+

b− Jω2

4

h22

ω2

4l
sin θ(sinφΓ3−cos φΓ2)

(
ω

2
Γ9+

l

ab
Γ4

)
,

γ1γ3 =
ω2

4l
(cos φΓ3 + sin φΓ2) cos θ

(
ω

2
Γ9 +

l

ab
Γ4

)
+

ω2

4
sin θΓ23 ,

γ1γ2 =
ω2

4l
(cos φΓ3 + sin φΓ2)

(
ω

2
Γ9 +

l

ab
Γ4

)
. (A.4)

One now projects the resulting equations onto the subspace defined by the projection

conditions for B̂HG and equations independent generators of the Clifford algebra to zero

individually. The constant term in equation (A.3) gives
(

b − Jω2

2

)
(B3 cos θ + B2) − i

ω2

4
sin θE2 , (A.5)

demanding this to be zero gives

E2 = 0 , B3 cos θ = −B2 . (A.6)

Further the coefficient (after using the projection condition Γ23ǫ = iǫ ) of eiφΓ2(
ω
2 Γ9+ l

abΓ4)

gives

E1 = −B3

(
b − Jω2

4

)
1

h22
= − 2l

ωλ
B3 , (A.7)

E3 = B1

(
b − Jω2

4

)
1

h22
=

2l

ωλ
B1 . (A.8)

These are the relations used in section 4.3.1. The Poinaré computation goes ahead in much

the same way, but is algebraically simpler.

B. Details of computations for giants

For a brane wrapping {τ, β, ξ2, ξ3} we have the induced metric

hgiant =




2ω2

λ2 (µ2
1 − 1) 0 lω

2λµ2
2

lω
2λµ2

3

0 l2(1 − µ2
1) 0 0

lω
2λµ2

2 0 l2µ2
2 0

lω
2λµ2

3 0 0 l2µ2
3


 . (B.1)

We compute

γ1γ2 = l2µ2

[
µ3Γ68 − µ2

(√
1 − µ2

1 Γ69 + µ1Γ67

)]

γ1γ3 = −l2µ3

[
µ2Γ68 + µ3

(√
1 − µ2

1 Γ69 + µ1Γ67

)]

γ2γ3 = −l2µ2µ3

[√
1 − µ2

1 Γ89 + µ1Γ87

]
. (B.2)
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The supersymmetry constraint (4.8) now reads

[
E1γ2γ3 − E2γ1γ3 + E3γ1γ2 + B3

(
−γ3γ0 +

lω

2λ
µ2

3

)

+B2

(
−γ2γ0 +

lω

2λ
µ2

2

)
− B1γ1γ0

]
ǫ∗ = 0 . (B.3)

Since we want to preserve the same supersymmetries as without flux, we can use the fact

that

Γǫ∗ = − 1√
− deth

(γ0γ1γ2γ3 − h03γ1γ2 + h02γ1γ3) ǫ∗ = iǫ∗ (B.4)

for the case of a brane. Plugging in the expressions for γ1γ2 and γ1γ3 from above, we arrive

at the equation

γ0γ1γ2γ3ǫ
∗ = −i

(√
−h − l3ω

2λ
µ2µ3(1 − µ2

1)

)
ǫ∗ ≡ −iAǫ∗ . (B.5)

It is easy to compute

A = − l2λ

2ω
µ2µ3h00 . (B.6)

Now we may write the supersymmetry condition

[(
E1 −

i

A
h00h11B1

)
γ2γ3 −

(
E2 −

i

A
h00h22B2

)
γ1γ3 (B.7)

+

(
E3 −

i

A
h00h33B3

)
γ1γ2 +

lω

2λ

(
B3µ

2
3 + B2µ

2
2

)]
ǫ∗ = 0 .

From this we may extract the coefficient equations of { l11,Γ69,Γ67}. Start with the coeffi-

cient of the unit matrix:

il2µ2µ3(E2 + E3) +
l2h00

A
µ2µ3 (h22B2 + h33B3) +

lω

2λ

(
B3µ

2
3 + B2µ

2
2

)
= 0 . (B.8)

We must equate real and imaginary parts to zero individually and obtain

E2 = −E3 B3 cos2 β = −B2 sin2 β . (B.9)

Next, we turn to the coefficient of Γ67:

−i

(
E1−

i

A
h00h11B1

)
µ2µ3 +µ2

3

(
E2−

i

A
h00h22B2

)
−µ2

2

(
E3−

i

A
h00h33B3

)
= 0 , (B.10)

while the coefficient of Γ69 gives

−i

(
E1−

i

A
h00h11B1

)
µ2µ3 +µ2

3

(
E2−

i

A
h00h22B2

)
−µ2

2

(
E3−

i

A
h00h33B3

)
= 0 , (B.11)

which are the same conditions. Equating the real and imaginary parts gives

−2ω

lλ
B1 = E2 , E1 =

2ω

lλ
(B2 − B3) . (B.12)
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A cross-check that these are correct is to compute

ǫµνρλFµνFρλ = E1B1 + E2B2 + E3B3 = 0 , (B.13)

which is needed for susy to hold. Thus the most general solution is:

E2 = −E3 = −2ω

lλ
B1 , B3 = −B2 tan2 β , E1 cos2 β =

2ω

lλ
B2 . (B.14)

This is the set of constraints used in section 4.3.3. Again, the Poincaré case proceeds

analgously.
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